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ABSTRACT

Remote sensing image segmentation requires multi-category

classification typically with limited number of labeled train-

ing samples. While semi-supervised learning (SSL) has

emerged as a sub-field of machine learning to tackle the

scarcity of labeled samples, most SSL algorithms to date

have had trade-offs in terms of scalability and/or applica-

bility to multi-categorical data. In this paper, we evalu-

ate semi-supervised logistic regression (SLR), a recent in-

formation theoretic semi-supervised algorithm, for remote

sensing image classification problems. SLR is a probabilis-

tic discriminative classifier and a specific instance of the

generalized maximum entropy framework with a convex loss

function. Moreover, the method is inherently multi-class

and easy to implement. These characteristics make SLR a

strong alternative to the widely used semi-supervised vari-

ants of SVM for the segmentation of remote sensing images.

We demonstrate the competitiveness of SLR in multispec-

tral, hyperspectral and radar image classification.

1. INTRODUCTION

Remote sensing is a discipline that studies and models the

processes occurring on the Earth’s surface and their inter-

action with the atmosphere [1]. Images acquired by air-

borne or satellite optical sensors measure the emergent ra-

diation at different wavelengths, while active sensors mea-

sure the back-scattered energy emitted by the on-board an-

tenna. In both cases, a pixel in the image can be defined as a

potentially very high-dimensional vector characterizing the

observed material. This information allows the character-

ization, identification, and classification of the land-cover

classes. The main focus of remote sensing data analysis is

image segmentation, however, its success is limited by the

scarcity (and also the quality) of the labeled pixels. Col-

lecting a sufficient amount of reliable labels requires a very
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costly terrestrial campaign, in terms of both time and hu-

man resources. As in most application domains, unlabeled

remote sensing data are relatively easier to obtain as it does

not require human annotator: one just has to select a set of

unlabeled pixels in the image.

In the last decade, semi-supervised learning (SSL) has

appeared as a promising tool for combining unlabeled data

along with labeled data so as to increase the accuracy and

robustness of predictions, e.g., [2] and references therein.

Semi-supervised learning aims to exploit prior knowledge

on the intrinsic geometry of the marginal data distribution.

For instance, the intuition behind many of the SSL algo-

rithms is that the model outputs should be smooth with re-

spect to the structure of the data, i.e., the labels of two inputs

that are similar with respect to the intrinsic geometry of data

are likely to be the same. This idea is often further specified

via the cluster assumption or the manifold assumption.

Twomain families of SSLmethods exist: generative and

discriminative approaches. In this paper, we focus on dis-

criminative models, which have been successfully used in

remote sensing [3]. A general taxonomy of discriminative

SSL methods can be given as follows: i. the Transductive

Support Vector Machine (TSVM) [4], which maximizes the

margin for labeled and unlabeled samples simultaneously;

ii. Graph-based methods, in which each sample diffuses its

label information to its neighbors until a global steady state

is achieved on the whole data set [5, 6]; iii. the Laplacian

SVM (LapSVM) [7, 8], which deforms the kernel matrix of

a standard SVM (or least squares SVM) using the relations

extracted from the graph Laplacian; iv. cluster and bagged

kernels [9], which modify the eigenspectrum of the training

kernel matrix with the spectrum of unsupervised kernels;

and v. semi-supervised neural networks [10] proposed as an

alternative method to overcome the high computational cost

of shallow architectures such as kernel methods.

Most semi-supervised variants of SVM suffer from a

high computational burden and consequently a limited num-

ber of unlabeled samples can be used for their training. This

gives rise to a poor estimation of the marginal data dis-

tribution. Many heuristics have been proposed to reduce

the computational cost of the TSVM. In [11], a mixed in-

teger programming was proposed to find the labeling with



the lowest objective function. The optimization, however, is

intractable for large data sets. In [12], a heuristic that iter-

atively solves a convex SVM objective function with alter-

nate labeling of unlabeled samples was proposed. Yet, the

algorithm is capable of dealing with a few thousand sam-

ples only. The ∇TSVM still has a cubic cost, and requires

storing huge kernel matrices [13]. Several alternative pro-

posals exist for the LapSVM, either by using a sparse mani-

fold regularizer [14] or by using an ℓ1 penalization term and

a regularization path algorithm [15]. A second and impor-

tant problem with LapSVM is related to the use of a func-

tional form of the Laplacian eigenmaps, which yields a con-

strained optimization problem that is hard to solve.

On a different note, in most SSL methods, unlabeled

data is integrated directly in the dual problem, often in an

ad-hoc manner, e.g., via a regularizer, which we believe

lacks an intuitive interpretation. Convexity is also a concern

for TSVM and related methods. Finally, for most SVM vari-

ants the issue of tackling classification problems for a vast

number of categories has not been solved entirely. These

methods use one-versus-all schemes and majority voting,

but this approach is neither natural nor well-motivated.

Here we evaluate a recent discriminative probabilistic

and multi-class SSL method originally presented in [16],

which solves most of the aforementioned problems. This

algorithm allows a natural interpretation of model weights,

and has a convex loss function which is a significant ad-

vantage. The semi-supervised logistic regression (SLR) al-

gorithm is founded on information-theoretic principles. In

particular, it is based on modifications to the penalty func-

tions of the generalized maximum entropy (MaxEnt) objec-

tive in the primal, such that the expectations of similarity

features over local regions are consistent. These modifica-

tions along with the minimization of the Kullback-Leibler

divergence yield the SLR loss. Encoding prior knowledge,

e.g., label proportions, is straightforward and scalability is

also ensured via sparse similarity features.

The remainder of the paper is outlined as follows. Sec-

tion 2 revises the generalized maximum entropy framework

for conditional distributions. This gives the basis for the

derivations of the semi-supervised logistic regression algo-

rithm presented in Section 3, as a particular instance of a

family of semi-supervised learning methods motivated by

MaxEnt. Section 4 describes the data collection, experi-

mental setup and a discussion on the results on multispec-

tral, hyperspectral, and very high resolution images. Finally,

Section 5 concludes with some remarks and further research

directions.

2. GENERALIZED MAXIMUM ENTROPY

FRAMEWORK

Generalized Maximum Entropy (MaxEnt) aims to find a

distribution that minimizes a divergence, D(p|q) between a

target distribution p and a reference distribution q (or equiv-
alently maximizes an entropy function when q is chosen

as the uniform distribution) while respecting prior infor-

mation represented as potential functions in miscellaneous

forms of constraints and/or penalties. When the model dis-

tribution p, which is the primal variable of the MaxEnt ob-

jective, defines a conditional distribution over classes for

each data point, MaxEnt leads to discriminative learning

algorithms, e.g., Logistic regression (LR) [17], kernel lo-

gistic regression (KLR) [18], or conditional random fields

(CRF) [19]. Using various forms of model spaces for p,
D, and approximation criteria yields a family of inference

algorithms which is referred to as the Generalized Max-

Ent framework [20]. In this section, we briefly summarize

the Maximum Entropy (MaxEnt) framework for conditional

distributions of the form,

P =

{

p | p(y|x) ≥ 0,
∑

y∈Y

p(y|x) = 1, ∀x ∈ X , ∀y ∈ Y

}

,

whereX and Y are respectively the input and output spaces.

In the traditional supervised setting, the divergence min-

imization objective is penalized with the discrepancy be-

tween observed values ψ̃ of some pre-defined model fea-

ture functions ψ : X × Y → B and their expected values

with respect to the target distribution. Often, ψ̃ is the em-

pirical average of the features and it can be derived from

a set of n input-output pairs {(xi, yi)|i = 1, . . . , n}, e.g.,

ψ̃ = 1
n

∑n

i=1 ψ(xi, yi). When the discrepancy functions

are differentiable and defined over finite dimensional fea-

ture spaces, the maximum entropy problem can be solved

using Lagrangian techniques. However, in the generalized

MaxEnt framework with non-differentiable penalty func-

tions or with infinite dimensional spaces, Fenchel’s duality

is required for a proper analysis of the primal-dual space

relations. See [21] for details.

The following lemma shows the duality of generalized

MaxEnt for conditional distributions and various supervised

learning methods.

Lemma 1 (MaxEnt Duality for conditionals) Let p, q ∈ P
be conditional distributions and D be a divergence function

that measures the discrepancy between two distributions,

D(p|q) =
∑

x

π̃(x)Dx (px|qx) . (1)

Moreover, let ψ : X ×Y → B be a feature map to a Banach

space B, g be a lower semi-continuous (lsc) convex function
and Ep is the conditional expectation operator. Also define

t :=min
p∈P

{

D(p|q) + g
(

Ep[ψ]; ψ̃, ǫ
)

}

, (2)

d := max
λ∈B∗

{

−
∑

x

π̃(x)D∗
x(〈ψ(x, .), λ〉 ; qx) (3)

− g∗(λ; ψ̃, ǫ)

}

,



where q is a reference distribution (reflecting the prior knowl-
edge for target distribution), B∗ is the dual space of B and

g∗ and D∗ are the convex conjugates of g and D respec-

tively. Then, d = t.

The conditional expectation is defined as

Ep[ψ] =
∑

x

π̃(x)Ey∼p(.|x)[ψ(x, y)],

where π̃ refers to the empirical marginal distribution. See

[16] for the proof of Lemma 1.

3. METHODOLOGY

This section presents the formulation of the semisupervised

logistic regression and provides details on the implementa-

tion.

3.1. Semi-supervised Logistic Regression

The semi-supervised logistic regression can be derived as a

specific instance of Lemma 1 imposing additional potential

functions to the primal MaxEnt problem [16]. Here, we are

particularly interested in the case of expectation penalties

which gives the following objective function,

min
p∈P

{

KL(p||q) +
‖ψ̃ − Ep[ψ]‖

2
2

2ǫ
+

‖Φp‖22
2ǫ

}

, (4)

where Dx is set to the Kullback-Leibler (KL) divergence,

ψ(x, y) are the model features as in the traditional LR set-

ting, and g is the squared-norm penalty function. We take

the reference distribution q as the uniform distribution.

If the linear operator Φp =
∑

x Φxpx over similarity

feature functions φ is defined as

φk,y(xi, y
′) =











s(xk, xi) if y = y′ and i 6= k,

−
∑

j s(xj , xi) if y = y′ and i = k,

0 otherwise

(5)

for i ∈ {1, . . . , n}, then (Φp)i,y yields the following addi-

tional potential function for xi:

(Φp)i,y =
∑

x̄∈Sx

(s(xi, x̄)p(y|xi)− s(xi, x̄)p(y|x̄)) , (6)

where s(·, ·) is a similarity function between samples, and

a particular form is given in Section 4, Eq. (9). This ad-

ditional potential enforces the weighted averages (with re-

spect to a predefined similarity measure encoded via the

similarity features φ) of the model outputs in local regions

centered around each instance xi, to match the model out-

put for that instance. In other words, this penalty function

manipulates the MaxEnt objective so that the model favors

smooth output probabilities over local regions.

This formulation requires nC additional optimization

parameters to the standard logistic regression where n is the

number of samples and C is the number of categories in the

classification problem. Deriving the convex dual of (4) us-

ing Fenchel’s duality yields the following semi-supervised

logistic regression with ℓ22 regularization,

Q(λ, γ) =
∑

x∈Sx

logZx(λ; γ)−
〈

λ, ψ̃
〉

+ ǫ
‖λ‖22
2

+ ǫ
‖γ‖22
2

,

where λ and γ are the dual variables corresponding to the

model and similarity features respectively. Z and F are

given as follows,

Zx(λ, γ) =
∑

y

exp (F (x, y;λ, γ)) , (7)

F (x, y;λ, γ) = 〈λ, ψ(x, y)〉+
∑

x̂

s(x̂, x)γxy

−
∑

x̄

s(x, x̄)γx̄y. (8)

The relation between the primal variable p and the dual vari-
ables λ and γ is given by p(y|x) = exp(F (x, y))/Zx, and

the gradients with respect to λ and γ are

∂Q(λ, γ)

∂λ
=Epx

[ψ(x, y)]− ψ̃ + ǫλ ,

∂Q(λ, γ)

∂γxy
=
∑

x̆

p(y|x̆)s(x̆, x)−
∑

x̂

p(y|x)s(x̂, x) + ǫγ .

Working in the dual space is advantageous as it yields an un-

constrained optimization problem that can easily be solved

via gradient descent methods. Note that the dual objective

Q(λ, γ) is no longer the negative log-likelihood term. First,

the similarity features and the corresponding optimization

parameters don’t exists in the inner product term involving

the empirical expectation. Second, the log-partition func-

tion logZx is summed over both labeled and unlabeled data.

The similarity terms in F can be seen as a flow problem,

where the weighted average of incoming flow from neigh-

bors s(x̂, x)γxy is matched to the outgoing flow s(x, x̄)γx̄y .
When one discards the similarity terms, the rest of this loss

function is identical to that of multinomial logistic regres-

sion.

The underlying motivation of SLR is similar to other

SSL methods that use similarities to impose the smoothness

criterion such as the graph based label propagation meth-

ods and Laplacian SVMs mentioned earlier. However, the

resulting formulation is substantially different as it treats

similarities as feature functions and associates parameters

to these features individually rather than treating them uni-

formly as in LapSVMs.

3.2. Implementation

To train our classifier, we use the Toolkit for Advanced Op-

timization(TAO) software [22] which is designed for large-

scale optimization problems. In particular, we have used the



limited memory variable metric (LMVM) algorithm (also

known as L-BFGS). Details on parameter tuning are given

in Section 4.

4. EXPERIMENTS

This section presents experimental results of the SLR algo-

rithm in various remote sensing image classification prob-

lems.

4.1. Data collection

We considered different kinds of remotely sensed images in

the experiments:

• Salinas. The Salinas AVIRIS data set, collected over

Salinas Valley, California. A total of 16 crop classes

were labeled. However, we selected the 8most repre-

sentative classes (‘Broccoli’, ‘Celery’, ‘Corn’, ‘Fal-

low’, ‘Lettuce’, ‘Soil’, ‘Stubble’, and ‘Vinyard’) in

the image to conduct the experiments. This is a high-

resolution scene with pixels of 3.7 meters and the

spectral similarity among the classes is also very high.

This hyperspectral image is 217×512 and contains

224 spectral channels.

• FC1. The Flightline C1 data is a 12-bands multi-

spectral image taken over Tippecanoe County, Indi-

ana (USA) by the M7 scanner in June 1966. The

image is 949 × 220 pixels and contains 10 classes,

mainly crop types, from which we selected the 4most

represented classes in the scene.

• Naples99. Images from ERS2 synthetic aperture radar

(SAR) and Landsat Thematic Mapper (TM) sensors

were acquired in 1999 over Naples (Italy). The avail-

able features were the seven TM bands, two SAR

backscattering intensities (0–35 days), and the SAR

interferometric coherence. Since these features come

from different sensors, the first step was to perform

a specific processing and conditioning of optical and

SAR data, which were then co-registered [23]. Af-

ter pre-processing, all features were stacked at a pixel

level.

• KSC. The image was acquired by the AVIRIS instru-

ment over the Kennedy Space Center (KSC), Florida,

on March 23rd, 1996. A total of 224 spectral bands

of 10 nm width with center wavelengths from 400-

2500 nm is acquired. The image was acquired from

an altitude of 20 km and has a spatial resolution of

18 m. After removing low SNR bands and water ab-

sorption, a total of 176 bands remains for analysis.

A total of 13 classes of interest were labeled repre-

senting the various land cover types of the environ-

ment. Classes were highly unbalanced, and different

marsh subclasses were labeled which makes it a diffi-

cult classification problem.

Salinas FC1 Naples (optical)

KSC Naples (SAR intensity)

Fig. 1. RGB composition of the considered five scenes,

ranging from multispectral to hyperspectral, radar and very

high spatial resolution imagery.

Note that the selected images cover the most significant re-

mote sensing situations and sensors: hyperspectral (Salinas,

KSC), multispectral (FC1, Naples), radar (Naples99), and

very high geometrical resolution imagery (FC1). RGB com-

positions along with the spectral dimensionality and spatial

resolution for the considered scenes are given in Fig. 1.

4.2. Experimental setup

For all considered classification problems, we have gener-

ated three data sets: training (t), validation (v) and unla-

beled (u) sets. Both training and validation sets contained

the same number of labeled samples (variable in the range

[100, 500]) and the unlabeled data set contained a total of

2000 samples (500 for the KSC data) to be used by the semi-

supervised methods. The data partitioning was done for

10 different realizations and we report the averaged overall

accuracy, OA[%] in inductive (validation) and transductive

(unlabeled) sets in all cases. Data was scaled in the range

[0, 1] before training.

4.3. Model Selection for SLR

With regard the proposed SLR method, the following simi-

larity definition was adopted:

s(xi, xj) =

{

K(xi, xj) if xj ∈ Nκxi
,

0 otherwise,
(9)

where K is a Gaussian radial basis function (RBF) kernel,

K(xi, xj) = exp
(

−‖xi − xj‖
2/2σ2

)

, where σ ∈ R
+ is the

kernel width, and Nκxi
is the κ-nearest neighborhood of xi

with respect to K. Note that this similarity metric is sparse

and non-symmetric. Several values for κ were tested.



The hyper-parameters of the SLR algorithm are the neigh-

borhood size κ in (9), the regularization constant ǫ and the

kernel bandwidth σ for the RBF kernel. We performed

cross validation on a subset of labeled samples for model

selection. From each data split we transferred 25% of the

labeled samples to the corresponding unlabeled data split

and found the model parameters that give the best average

transduction performance on these samples only. In other

words, model selection is completely blind to the true la-

bels of the unlabeled samples in order to reflect the real-life

scenario as closely as possible. We considered a range of

hyper-parameters for model selection, κ ∈ {20, 30, 40} and
ǫ ∈ {e−1, e−2, e−3, e−4}. We set σ to the median of pair-

wise distances.

4.4. Model Selection for Other Methods

We compare SLR with standard methods in the literature:

classical SVM, regularized least squares SVM (RLSC), Lap-

lacian SVM (LapSVM), and the Laplacian RLSC. Note that

LapSVM contains other SSL methods as particular cases,

and hence we are implicitly testing, for instance, spectral

clustering, graph-based regularization or label propagation

algorithms [7].

For all the semi-supervised SVM variants, we used the

RBF kernel. The graph Laplacian consisted of labeled plus

unlabeled nodes connected using κ nearest neighbors, and

computed the edge weights using the Euclidean distance

among samples. Two more free parameters are tuned in

Laplacian methods: γL is the standard regularization pa-

rameter for the decision function and γM controls its com-

plexity in the intrinsic geometry of the marginal data distri-

bution. Both parameters were varied in the range [10−4, 104],
the number of neighbors κ used to compute the graph Lapla-

cian was varied from 3 to 9, and the kernel width was tuned

in the range σ = {10−2, . . . , 10}. The selection of the

best subset of free parameters was carried out via cross-

validation on the training set.

4.5. Results

Results are shown in Fig. 2 for the inductive (prediction

on the validation set) and transductive (prediction on the

unlabeled set) settings for all considered images.

For the particular cases of FC1 and Salinas, we observe

that a clear gain is obtained by all semi-supervised methods

in the inductive setting, and SLR outperforms the rest with

an average gain of +1.1% (FlightLine C1) and +2% (Sali-

nas). The gain over supervised approaches is more notice-

able when working with a low number of training samples.

In the transductive settings, a marginal gain is obtained over

LapSVM/LapRLSC for the FlightLine C1 image. For the

Salinas image, a dramatic improvement is obtained when

working with low-sized data sets (n < 300), but perfor-
mance saturates for n > 300 and unlabeled data can worsen
the results.

In the case of Naples, the SLR transduction error is lower

than 1% and largely outperforms the rest of the methods

while the induction accuracy is too low. Both results match

with the data characteristics: we are merging features of

different nature (optical and radar) so we observe that, first,

the data set is very sensitive to the non-linear similarity fea-

tures, and second, that a linear logistic regression may not

be sufficient to solve the problem.

Finally, in the case of the hyperspectral KSC image, we

observe poor performance in the inductive setting (using un-

labeled samples here may even harm the solution) but high

accuracy is noticed in transduction, with an average gain

over the (nonlinear) Laplacian methods of around +1.5%.

5. CONCLUSIONS

We have empirically evaluated the semi-supervised logistic

regression (SLR), a recently introduced information-theore-

tic semi-supervised algorithm, in the domain of remote sens-

ing image classification. SLR has shown to be well suited

as it is inherently a multi-class discriminative algorithm and

hence it does not require 1-vs-rest inference scheme as the

majority of discriminative SSL algorithms, particularly the

semi-supervised variants of SVMs. The method performs

well for a wide range of sensor types: ranging from low-

dimensional multispectral images to very high-dimensional

hyperspectral imagery, and also in the case of high spatial

redundancy. Therefore, we conclude that it constitutes a

powerful method for image classification.

The proposed SLR can be easily extended to semi-super-

vised kernel logistic regression when the features ψ are de-

fined in a reproducing kernel Hilbert spaceH. Further work

will consider development and experimental comparison of

this method. Finally, through the experiments, we have

identified that a proper selection of training samples would

play a role in the classification accuracy. Active learning or

simple spatial image sampling could be considered to im-

prove the results.
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